Learning model-free robot control by a Monte Carlo EM algorithm
نویسندگان
چکیده
We address the problem of learning robot control by model-free reinforcement learning (RL). We adopt the probabilistic model of Vlassis and Toussaint (2009) for model-free RL, and we propose a Monte Carlo EM algorithm (MCEM) for control learning that searches directly in the space of controller parameters using information obtained from randomly generated robot trajectories. MCEM is related to, and generalizes, the PoWER algorithm of Kober and Peters (2009). In the finite-horizon case MCEM reduces precisely to PoWER, but MCEM can also handle the discounted infinite-horizon case. An interesting result is that the infinite-horizon case can be viewed as a ‘randomized’ version of the finite-horizon case, in the sense that the length of each sampled trajectory is a random draw from an appropriately constructed geometric distribution. We provide some preliminary experiments demonstrating the effects of fixed (PoWER) vs randomized (MCEM) horizon length in two simulated and one real robot control tasks.
منابع مشابه
Robust Monte Carlo Control Policies to Maneuver Tensegrity Robots out of Obstacles
Multiagent learning has been shown to be e↵ective in creating control policies for sophisticated soft-robotic systems based on tensegrity structures (built from interconnected rods and cables). The distributed nature of the tension network within a tensegrity structure along with its smooth distribution of forces is a natural match for distributed learning. Indeed, multiagent learning has been ...
متن کاملDiscrete time robust control of robot manipulators in the task space using adaptive fuzzy estimator
This paper presents a discrete-time robust control for electrically driven robot manipulators in the task space. A novel discrete-time model-free control law is proposed by employing an adaptive fuzzy estimator for the compensation of the uncertainty including model uncertainty, external disturbances and discretization error. Parameters of the fuzzy estimator are adapted to minimize the estimat...
متن کاملOn Solving General State-Space Sequential Decision Problems using Inference Algorithms
A recently proposed formulation of the stochastic planning and control problem as one of parameter estimation for suitable artificial statistical models has led to the adoption of inference algorithms for this notoriously hard problem. At the algorithmic level, the focus has been on developing Expectation-Maximization (EM) algorithms. For example, Toussaint et al (2006) uses EM with optimal smo...
متن کاملQuasi-Monte Carlo sampling to improve the efficiency of Monte Carlo EM
In this paper we investigate an efficient implementation of the Monte Carlo EM algorithm based on Quasi-Monte Carlo sampling. The Monte Carlo EM algorithm is a stochastic version of the deterministic EM (Expectation-Maximization) algorithm in which an intractable E-step is replaced by a Monte Carlo approximation. Quasi-Monte Carlo methods produce deterministic sequences of points that can signi...
متن کاملTrans-dimensional MCMC for Bayesian Policy Learning
A recently proposed formulation of the stochastic planning and control problem as one of parameter estimation for suitable artificial statistical models has led to the adoption of inference algorithms for this notoriously hard problem. At the algorithmic level, the focus has been on developing Expectation-Maximization (EM) algorithms. In this paper, we begin by making the crucial observation th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Auton. Robots
دوره 27 شماره
صفحات -
تاریخ انتشار 2009